

Excreta Matters: Our Rivers are Sewers

Centre for Science and Environment, New Delhi

Why are Rivers Sewers?

- Domestic Sewage
- Over-exploitation of water
- Encroachment
- Sand-mining

Urbanization

- 30% decadal growth, 2001 2011, in number of census towns
- Metro cities have grown larger
- Class 1 and Class 2 towns have grown
- About 3,000 new towns have emerged from rural India
- Little or no sewage treatment, most rely on septic tanks or casual disposal of liquid waste in rivers or lakes

Sewage generation

City category &	Number	Sewage	Installed	Capacity gap	
population	of cities	generation,	treatment	MLD (%)	
		MLD	capacity, MLD		
			(%)		
Metros	35	15,644	8,040 (51%)	7,604 (49%)	
Class I cities	414**	26,164	6,047 (23%)	8605 (77%)	
Class II towns	489**	2,965	200 (6.7%)	2,765 (93.3%)	
Totals	938	44,774	14,287 (32%)	30,487 (68%)	

Planning for hardware

Cities plan for treatment plants not sewerage

- Treatment plants are not simple answers
- Can build plants to treat, but there is no waste being conveyed for treatment
- Most cities do not have underground sewerage

Unsewered cities are the biggest cause of pollution New growth cities are growing without sewers Backlog and front-log impossible to fix As cities fix one drain, another goes under

71-CITY SURVEY: AREA COVERED BY CLOSED DRAINS SHOWS REAL STATE OF SEWAGE COLLECTION

% of area o	covered			
0-10	Cuttack, Guwahati, Jabalpur, Jammu, Ranchi, Thane, Aizawl, Bathinda, Bhilwara, Siliguri, Srikakulam			
10-30	Agra, Alwar, Aurangabad, Indore, Mathura, Meerut, Puducherry, Thiruvananthapuram, Dehradun, Dewas, Hubli-Dharwad, Jhansi, Kozhikode, Lucknow, Solapur, Tumkur, Udaipur, Ujjain, Dhanbad			
30-50	Allahabad, Bengaluru, Bhopal, Delhi, Lucknow, Patna, Srinagar, Amritsar, Bhubaneswar, Jodhpur, Mumbai			
50-70	Faridabad ² , Hyderabad, Jaipur ¹ , Kanpur, Kolkata, Nagpur, Gwalior, Mussoorie, Nainital, Rajkot, Vadodara, Yamunanagar			
> 70	Chennai, Pune, Surat, Gurgaon ²			

¹Claims 80% coverage in CSE survey, 65% in City Development Plan for JNNURM; ²Faridabad and Gurgaon: only old-city within municipal limit included Source: Anon 2011, 71-City Water-Excreta Survey, 2005-06, Centre for Science and Environment, New Delhi

Guwahati, Jabalpur, Jammu, Ranchi, Thane, Aizawl, Bathinda, Bhilwara, Jammu, Jabalpur, Siliguri, Srikakulam

Monitoring River Pollution

- Central Pollution Control Board and state boards have 2500 stations in 28 States and 6 Union Territories
- Monitoring is done on monthly or quarterly basis in surface waters and on half yearly basis in case of ground water
- Network covers 445 Rivers, 154 Lakes, 12
 Tanks, 78 Ponds, 41 Creeks/Seawater, 25
 Canals, 45 Drains, 10 Water Treatment Plant
 (Raw Water) and 807 Wells

River Pollution									
Table-I: Comparative Assessment of BOD levels in Rivers									
River	B.O.D. (mg/l) 2011 2010		River	B.O.D. (mg/l) 2011 2010					
Kala Amb	535.0	1025.0	Ghaggar	68.0	70.0				
Kundalika	12.0	250	Amravati (Tapi)	10.0	12.0				
Hindon	50.0	278	Girna	10.0	12.0				
Khan	1.3	120	Gomai	8.0	10.0				
Bhavani	6.2	93.0	Wena	12.0	13.6				
Mula	19.5	88.5	Gomti	10.5	12.0				
Mula-Mutha	21.5	79.0	Hiwara	8.0	9.0				
Mutha	23.5	68.0	Kalisot	5.4	6.4				
Yamuna	41.0	84.0	Nira (Godavari)	8.5	9.2				
Pawana	19.5	58.0	Kharkhla	7.5	7.8				

THE FUTURE IS SALTY?

- The per capita availability in 1951: 5 ML/per capita
- Today: 1.6 ML/per capita
- Projections: 1.341 ML by 2025 and 1.140 ML 2050
- The overall water demand by 2050 will be 1447
 bcm (utilizable water is 1123 bcm)
- Irrigation demand will be 1072 bcm

Sand is a minor mineral

- 2.28 MT mined in 2009-10 legally
- 62% from 15 large mines
 (50,000 tpa), 33% from 56
 medium mines (5,000 –
 50,000 tpa) and 5% from 62
 small mines (>5,000 tpa)
- Illegal sand mining is rampant along all rivers especially outside the rainy season

Undermines a River

- Negative impacts of sand mining on
 - Land stability
 - Soil structure
 - River bed
 - Surface water
 - In-stream flora and fauna
 - Sand bars
 - Fishing
 - Agriculture

Encroachment

- Under the garb of urban renewal, cities are changing land use in river floodplains
- Real estate so created is being used for commercial and recreation purposes
- Floodplains are shrinking, rivers become flood-prone

Encroachment

- Sabarmati River, Ahmedabad
- Mulla-Mutha River, Pune
- Yamuna River, Delhi
- Mithi River, Mumbai

Rivers have been constricted

Reform agenda

- 1. Let rivers flow
- 2. Invest in local water systems
- 3. Reduce water demand
- 4. Spend on sewage not on water
- 5. Cut costs on sewage systems
- 6. Plan to recycle and reuse every drop

Agenda: Improve the quality of water supply

- Assured supply
- Good quality
- Promote water-efficient appliances
- Promote water-prudent cities
- Promote water-wise societies

Plan for sewage

Agenda: Plan for sewage before water

- No water scheme must be passed without sewage component
- Costs of sewage must be designed
- Will force re-evaluation of technology to design for affordable solutions
- Sewage must be our obsession

Prioritise sewage

- Do not give more water to cities unless they reduce wastage, reduce intra-city inequity, reduce demand of water
- Do not wait for underground sewage drain, pipe, pump, treatment plant to be built, repaired, or inaugurated
- Plan for sewage treatment now
- Use open drains as treatment zones
- Use lakes and ponds as treatment zones
- Treat locally so that treated water can be used locally

Plan deliberately for reuse

Agenda: plan for reuse of every drop of sewage

Singapore treats waste to water Expensive

We can treat waste for reuse in agriculture Less expensive

Kolkata wetlands were city's kidney – flushed and cleaned waste. **But discounted**

Many other cities sewage used by farmers. But polluted. **Needs attention**

